The singular Dirichlet problem for the complex Monge-Ampère operator on complex manifolds
نویسندگان
چکیده
منابع مشابه
The Dirichlet Problem for Complex Monge-ampère Equations and Applications
We are concerned with the Dirichlet problem for complex MongeAmpère equations and their applications in complex geometry and analysis. 2000 Mathematical Subject Classification: 35J65, 35J70, 53C21, 58J10, 58J32, 32W20, 32U05, 32U35, 32Q15.
متن کاملThe Dirichlet Problem for Degenerate Complex Monge-ampere Equations
The Dirichlet problem for a Monge-Ampère equation corresponding to a nonnegative, possible degenerate cohomology class on a Kähler manifold with boundary is studied. C1,α estimates away from a divisor are obtained, by combining techniques of Blocki, Tsuji, Yau, and pluripotential theory. In particular, C1,α geodesic rays in the space of Kähler potentials are constructed for each test configurat...
متن کاملComplex Monge-ampère of a Maximum
Pluri-subharmonic (psh) functions play a primary role in pluri-potential theory. They are closely related to the operator dd c = 2i∂ ¯ ∂ (with notation d = ∂ + ¯ ∂ and d c = i(¯ ∂ − ∂)), which serves as a generalization of the Laplacian from C to C dim for dim > 1. If u is smooth of class C 2 , then for 1 ≤ n ≤ dim, the coefficients of the exterior power (dd c u) n are given by the n×n sub-dete...
متن کاملThe Dirichlet Problem for Complex Monge-ampère Equations and Regularity of the Pluri-complex Green Function
(1.1) det(uzj z̄k) = ψ(z, u,∇u) in Ω, u = φ on ∂Ω and related questions. When Ω is a strongly pseudoconvex domain, this problem has received extensive study. In [4]-[6], E. Bedford and B. A. Taylor established the existence, uniqueness and global Lipschitz regularity of generalized pluri-subharmonic solutions. S.-Y. Cheng and S.-T. Yau [8], in their work on complete Kähler-Einstein metrics on no...
متن کاملEinstein - Weyl structures on complex manifolds and conformal version of Monge - Ampère equation
A Hermitian Einstein-Weyl manifold is a complex manifold admitting a Ricci-flat Kähler covering M̃ , with the deck transform acting on M̃ by homotheties. If compact, it admits a canonical Vaisman metric, due to Gauduchon. We show that a Hermitian Einstein-Weyl structure on a compact complex manifold is determined by its volume form. This result is a conformal analogue of Calabi’s theorem stating ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 1989
ISSN: 0386-5991
DOI: 10.2996/kmj/1138038995